Psikhologicheskie Issledovaniya • ISSN 2075-7999
peer-reviewed • open access journal
      

 

Shvarts A.Yu. The role of visual representations in mathematical cognition and understanding mathematics

Full text in Russian: Шварц А.Ю. Роль чувственных представлений в математическом познании и понимании математики
Lomonosov Moscow State University, Moscow, Russia

About author
Suggested citation


The problem of visual representations in mathematics is analyzed within the framework of activity approach. Visual representations of mathematical concepts reflect visual material operation schemes rather than visual material objective characteristics that are independent of the recipient. A fundamental distinction is made between internal and external means of visualization in mathematics: an internal image is included in the schemes according to which it is perceived and used. Common roots of sensible and non-sensible intuition in mathematics are identified: intuition allows to grasp an operation scheme with external sign models. It is proposed to treat the mathematical concept as a coordination of various operation schemes with sign-symbol models: spatial, verbal and algebraic. Educational consequences of the presented approach to visual representations are discussed.

Keywords: visualization, visual representation, scheme, mathematical thinking, mathematical concept, intuition

 

Acknowledgement
The author thanks A.N.Krichevets for detailed discussion over the article content.


References
Cyrillic letters are transliterated according to BSI standards.

Arcavi A. The role of visual representations in the learning of mathematics // Educational studies in mathematics. 2003. Vol. 52(3). P. 215–241.

Arnheim R. Vizual'noe myshlenie: per. s angl. // Psikhologiya myshleniya: khrestomatiya po psikhologii / pod red. Yu.B.Gippenreiter i dr. 2-e izd., pererab. i dop. M.: AST: Astrel', 2008. S. 182–190. [in Russian]

Arnold V.I. Antinauchnaya revolyutsiya i matematika // Vestnik rossiiskoi akademii nauk. 1999. T. 69, N 6. S. 553–558. [in Russian]

Aspinwall L., Shaw K.L., Presmeg N.C. Uncontrollable mental imagery: Graphical connections between a function and its derivative // Educational Studies in Mathematics. 1997. Vol. 33(3). P. 301–317.

Belyaev E.A., Perminov V.Ya. Filosofskie i metodologicheskie problemy matematiki. M.: Izd-vo Mosk. un-ta, 1981. [in Russian]

Boss V. Intuitsiya i matematika. M.: Airis-press, 2003. [in Russian]

Campbell K.J., Collis K.F., Watsn J.M. Visual processing during mathematical problem solving // Educational studies in mathematics. 1995. Vol. 28(2). P. 177–194.

Cassirer E. Poznanie i deistvitel'nost' / per. s nem. B.Stolpnera, P.Yushkevicha. M.: Gnozis, 2006. [in Russian]

Davydov V.V. Vidy obobshcheniya v obuchenii: Logiko-psikhologicheskie problemy postroeniya uchebnykh predmetov. M.: Pedagogicheskoe obshchestvo Rossii, 2000. [in Russian]

Deniskina V.Z. Osobennosti ovladeniya slepymi shkol'nikami elementami geometrii i navykami chercheniya i nekotorye metodicheskie rekomendatsii // Defektologiya. 1979. N 4. S. 45–49. [in Russian]

Dieudonné J. Abstraktsiya i matematicheskaya intuitsiya: per. s fr. // Matematiki o matematike. M.: Znanie, 1982. S. 6–21. [in Russian]

Dreyfus T., Eisenberg T. On difficulties with diagrams: theoretical issues // G.Booker, P.Cobb, T. de Mendicuti (Eds.). Proceedings of the 14th PME International Conference, 1990. Vol. 1. P. 27–36.

Dubinsky E. Mathematical literacy and abstraction in the 21st century // School Science and Mathematics. 2000. Vol. 100(6). P. 289–297.

Edwards B.S., Dubinsky E., McDonald M.A. Advanced mathematical thinking // Mathematical Thinking and Learning. 2005. Vol. 7(1). P. 15–25.

Gagatsis A., Shiakalli M. Ability to Translate from One Representation of the Concept of Function to Another and Mathematical Problem Solving // Educational Psychology. 2004. Vol. 24(5). P. 645–657.

Galperin P.Ya. O formirovanii chuvstvennykh obrazov i ponyatii: materialy soveshchaniya po psikhologii (iyul' 1955). M.: Izd-vo APN RSFSR, 1957. S. 417–425. [in Russian]

Gregory R. Razumnyi glaz: Kak my uznaem to, chto nam ne dano v oshchushcheniyakh: per. s angl. A.I.Kogana. Izd-e 3-e. M.: Librokom, 2009. [in Russian]

Hegarty M., Kozhevnikov M. Types of visual-spatial representations and mathematical problem solving // Journal of educational psychology. 1999. Vol. 91(4). P. 684–689.

Johnson M. The body in the mind: the bodily basis of meaning, imagination and reason. Chicago: University of Chicago Press, 1987.

Kant I. Kritika chistogo razuma / per. s nem. N.Losskogo. M.: Mysl', 1994. [in Russian]

Krogius A.A. Psikhologiya slepykh i ee znachenie dlya obshchei psikhologii. Saratov: [b.i.], 1926. [in Russian]

Krutetskii V.A. Psikhologiya matematicheskikh sposobnostei shkol'nikov. M.: Prosveshchenie, 1968. [in Russian]

Leontiev A.N. Problemy razvitiya psikhiki. 3-e izd. M.: Izd-vo Mosk. un-ta, 1972. [in Russian]

Litvak A.G. Psikhologiya slepykh i slabovidyashchikh. Spb.: Karo, 2006. [in Russian]

Malykh R.F. Obuchenie matematike slepykh i slabovidyashchikh mladshikh shkol'nikov: ucheb. posobie. SPb.: Izd-vo RGPU im. A.I.Gertsena. 2004. [in Russian]

Marx K. Tezisy o Feierbakhe // Marx K., Engels F. Sochineniya: per. s nem. 2-e izd. M.: Gospolitizdat, 1955. T. 3. S. 1–4. [in Russian]

Miller S.P., Hudson P.J. Helping students with disabilities understand what mathematics means // Teaching exceptional children. 2006. Vol. 39(1). P. 28–35.

National Council of Teachers of Mathematics (NCTM). Principles and standards for school mathematics. Reston, VA: NCTM, 2000.

Novikov S.P. Vtoraya polovina ХХ veka i ee itog: krizis fiziko-matematicheskogo soobshchestva v Rossii i na zapade // Vestnik DVO RAN. 2006. Vyp. 4. S. 3–22. [in Russian]

Ostrovskaya E.B. Formirovanie predstavleniya o zamknutom prostranstve u slepykh i chastichno vidyashchikh mladshikh shkol'nikakh // Defektologiya. 1976. N 2. S  54–57. [in Russian]

Plaksina L.I. Kak nauchit' slabovidyashchego rebenka videt' i ponimat' okruzhayushchii mir // Defektologiya. 1985. N 1. S. 87–88. [in Russian]

Poincare A. Intuitsiya i logika v matematike // Poincare A.O nauke / pod red. L.S.Pontryaginа; per. s fr. S.G.Suvorova. M.: Nauka, 1989. S. 205–218. [in Russian]

Ponomarev Ya.A. Znanie, myshlenie i umstvennoe razvitie. M.: Prosveshchenie, 1967. [in Russian]

Pontryagin L.S. O matematike i kachestve ee prepodavaniya // Kommunist. 1980. N 14. S. 99–112. [in Russian]

Prasolov V.V. Geometriya Lobachevskogo. M.: Izd-vo MTsNMO, 2004. [in Russian]

Presmeg N.C. Prototypes, metaphors, metonymies, and imaginative rationality in high school mathematics // Educational studies in mathematics. 1992. Vol. 23(6). P. 595–610.

Presmeg N.C. Visualization and mathematical giftedness // Educational studies in mathematics. 1986. Vol. 17. P. 297–311.

Presmeg N.C. Research on visualization in learning and teaching mathematics: emergence from psychology // A.Gutierrez, P.Boero (Eds.). Handbook of research on the psychology of mathematics education:past, present and future. 2006. P. 205–235.

Rubinstein S.L. Osnovy obshchei psikhologii. SPb.: Piter, 2000. [in Russian]

Stylianou D.A., Silver E.A. The role of visual representations in advanced mathematical problem solving: an examination of expert-novice similarities and differences // Mathematical thinking and learning. 2004. Vol. 6(4). P. 353–387

Van Garderen D., Montague M. Visual-spatial representation, mathematical problem solving, and students of varying abilities // Learning disabilities research and practice. 2003. Vol. 18(4). P. 246–254.

Vekker L.M. Psikhika i real'nost'. Edinaya teoriya psikhicheskikh protsessov. M.: Smysl, 1998. [in Russian]

Voronin V.M. Psikhologo-pedagogicheskie aspekty obucheniya uchashchikhsya s narusheniyami zreniya s primeneniem komp'yuternoi tekhniki // Defektologiya. 1985. N 1. S. 49–55. [in Russian]

Weyl H. Matematicheskoe myshlenie: per. s angl. i nem. / pod red. B.V.Biryukova, A.N.Parshina. M.: Nauka, 1989. [in Russian]

Yavlenie chrezvychainoe. Kniga o Kolmogorove: sbornik statei. M.: FAZIS, MIROS, 1999. [in Russian]

Zazkis R., Dubinsky E., Dauterman J. Coordinating visual and analytic strategies: a study of students' understanding of the group D4 // Journal for research in mathematics education. 1996. Vol. 27(4). P. 435–457.

Received 7 March 2011. Date of publication: 30 June 2011.

About author

Shvarts Anna Y. Ph.D. student, Faculty of Psychology, Lomonosov Moscow State University, ul. Mokhovaya, 11, str. 9, 125009, Moscow, Russia.
E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Suggested citation

Shvarts A.Yu. The role of visual representations in mathematical cognition and understanding mathematics. Psikhologicheskie Issledovaniya, 2011, No. 3(17), p. 1. http://psystudy.ru. 0421100116/0024. [in Russian, abstr. in English].

Back to top >>