Psikhologicheskie Issledovaniya • ISSN 2075-7999
peer-reviewed • open access journal
      

 

Terekhin A.T., Budilova E.V., Kachalova L.M., Karpenko M.P. Neural network modeling of brain cognitive functions: review of basic ideas

 

Full text in Russian: Терехин А.Т., Будилова Е.В., Качалова Л.М., Карпенко М.П. Нейросетевое моделирование когнитивных функций мозга: обзор основных идей
Lomonosov Moscow State University, Moscow, Russia
Modern University for the Humanities, Moscow, Russia

About authors
Suggested citation


A review of basic ideas of neural network modeling of brain cognitive functions is given. Several models of the neuron are described: threshold neuron of McCulloch and Pitts, neuron with sigmoid activation function, neuron with non-monotone activation function, stochastic neuron, impulse neuron. As well different types of network architectures are described: perceptron, back-propagation network, Hopfield network, Boltzman machine. Structured models composed of more than one neural networks and used for modeling particular brain systems (hyppocampus, hippocampus – neocortex system, prefrontal cortex – basal ganglia system) are considered. In conclusuion, general principles of brain modeling are discussed.

Keywords: neural network modeling, neural network, neuron model, perceptron, Hopfield network, back-propagation network, Boltzman machine, cognitive functions, brain, hyppocampus, neocortex, prefrontal cortex, basal ganglia

 

References
Cyrillic letters are transliterated according to BSI standards. The titles are given in author’s translation [in square brackets].

Amari S. Learning patterns and pattern sequences by self-organiz­ing nets of threshold elements // IEEE Trans. Comput. 1972. Vol. 21. P. 1197–1206.

Amit D.J. Modeling brain function. The world of attractor neural networks. New York: Cambridge University Press, 1989.

Ans B., Rousset S. Avoiding catastrophic forgetting by coupling two reverberating neural networks // Comptes Rendus de l’Academie des Sciences – Series III – Sciences de la Vie. 1997. Vol. 320. P. 989–997.

Budilova E.V., Teriokhin A.T. A bibliographic data base on neural networks and neurocomputers // The RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers. Rostov-on-Don, 1992. New York: IEEE, 1992. Vol. 2. P. 1125–1126.

Deniau J.M., Chevalier G. Disinhibition as a basic processin the expression of striatal functions: II. The striato-nigral influenceon thalamocortical cells of the ventromedial thalamic nucleus // Brain Research, 1985. Vol. 334. P. 227–233.

Dunin-Barkovskii V.L., Terekhin A.T. Neironnye seti i neirokomp'yutery: tendentsii razvitiya issledovanii i razrabotok [Neural networks and neurocomputers: trends in research and development] // Mikroprotsecsornye sredstva i sistemy. 1990. N 2. C. 12–14. [in Russian]

Florian R.V. Biologically inspired neural networks for the control of embodied agents [Electronic resource] // Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Technical Report Coneural-03-03, 2003. URL: http://www.coneural.org (date of access: 11.11.2008).

Frank M.J., Loughry B., O'Reilly R.C. Interactions between the frontal cortex and basal ganglia in working memory: A computational model [Electronic resource] // Cognitive, Affective, and Behavioral Neuroscience. 2001. Vol. 1. P. 137–160. URL: http://psych.colorado.edu/oreilly/paprers/FrankLoughryOReilly014_fcbg.pdf (date of access: 11.11.2008).

French R.M. Pseudo-recurrent connectionist networks: An approach to the “sensitivity–stability” dilemma [Electronic resource] // Connection Science. 1997. Vol. 9, Issue 4. P. 353–379. URL: http://www.ulg.ac.be/cogsci/rfrench/psdnet.pdf (date of access: 11.11.2008).

French R.M. Selective memory loss in aphasics: An insight from pseudorecurrent connectionist networks. Connectionist Representations [Electronic resource] // Proceedings of the Fourth Neural Computation and Psychology Workshop / ed. by J.Bullinaria, G.Houghton, D.Glasspool. Berlin: Springer-Verlag, 1997. P. 183–195. URL: http://www.ulg.ac.be/cogsci/rfrench/aphasics.pdf (date of access: 11.11.2008).

French R.M. Catastrophic Forgetting in Connectionist Networks [Electronic resource] // Trends in Cognitive Sciences. 1999. Vol. 3, Issue 4. P. 128–135. URL: http://www.ulg.ac.be/cogsci/rfrench/TICS_cat_forget.pdf (date of access: 11.11.2008).

French R.M., Ans B., Rousset S. Pseudopatterns and dual-network memory models: Advantages and shortcomings [Electronic resource] // Connectionist Models of Learning, Development and Evolution / ed. by R.French, J.Sougné. London: Springer, 2001. P. 13–22. URL: http://www.ulg.ac.be/cogsci/rfrench/ncpw6_french_ans_rousset.pdf (date of access: 11.11.2008).

French R.M., Mareschal D. Could category-specific semantic deficits reflect differences in the distributions of features within a unified semantic memory? [Electronic resource] // Proceedings of the Twentieth Annual Cognitive Science Society Conference. NJ: LEA, 1998. P. 374–379. URL: http://www.ulg.ac.be/cogsci/rfrench/anomia_98.pdf (date of access: 11.11.2008).

Gerstner W. Time structure of the activity in neural network models [Electronic resource] // Phys. Rev. EVol. Vol. 1995. Vol. 51. P. 738–758. URL: http://diwww.epfl.ch/~gerstner/PUBLICATIONS/Gerstner95PRE.pdf (date of access: 11.11.2008).

Gerstner W. Spiking neurons // Pulsed neural networks / ed. by Maass W., Bishop С.М. Cambridge, MA: MIT Press, 1999. P. 3–53.

Gerstner W., Kempter R., van Hemmen J.L., Wagner H. A neuronal learning rule for sub-millisecond temporal coding [Electronic resource] // Nature. 1996. Vol. 383. P. 76–78. URL: http://diwww.epfl.ch/~gerstner/PUBLICATIONS/Nature96-text.pdf (date of access: 11.11.2008).

Gerstner W., Kistler W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity [Electronic resource]. Cambridge, MA: Cambridge Univ. Press, 2002. URL: http://diwww.epfl.ch/~gerstner/BUCH.html (date of access: 11.11.2008).

Gerstner W., Ritz R., van Hemmen J.L. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns // Biol. Cybern. 1993. Vol. 69. P. 503–515.

Hasselmo M.E., Cannon R.C., Koene R. A simulation of parahippocampal and hippocampal structures guiding spatial navigation of a virtual rat in a virtual environment: A functional framework for theta theory // The Parahippocampal Region: Organization and Role in Cognitive Function / ed. by M.P.Witter, F.Wouterlood. London: Oxford Univ. Press, 2002.

Hasselmo M.E., McClelland J.L. Neural models of memory [Electronic resource] // Current Opinion in Neurobiology. 1999. Vol. 9. P. 184–188. URL: http://biomednet.com/elecref/0959438800900184 (date of access: 11.11.2008).

Hasselmo M.E., Wyble B.P. Simulation of the effects of scopolamine on free recall and recognition in a network model of the hippocampus // Behav. Brain Res. 1997. Vol. 89. P. 1–34.

Hasselmo M.E., Wyble B.P., Cannon R.C. From spike frequency to free recall: How neural circuits perform encoding and retrieval [Electronic resource] // The Cognitive Neuroscience of Memory: Encoding and Retrieval / ed. by A.Parker, T.J.Bussey, E.Wilding. London: Psychology Press, 2001. URL: http://people.bu.edu/hasselmo/BusseyChapterFinal.pdf (date of access: 11.11.2008).

Hebb D.O. The organization of behavior. A neuropsychlogical theory. New York: Wiley, 1949.

Herz A.V.M., Sulzer B., Kühn R., van Hemmen J.L. Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets // Biol. Cybern. 1989. Vol. 60. P. 457–467.

Hinton G.E., Sejnowski T.J. Learning and relearning in Boltzman machines // Parallel Distributed Processing. Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press, 1986. Vol. 1. P. 282–317.

Hinton G.E., McClelland J.L. Learning representations by recirculation // Neural information processing systems / ed. by D.Z.Anderson. New York: American Institute of Physics, 1988. P. 358–366.

Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // Journal of Physiology. 1952. Vol. 117. P. 500–544.

Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities [Electronic resource] // Proc. Natl. Acad. Sci. USA. 1982. Vol. 79, Issue 8. P. 2554–2558. URL: http://www.pnas.org/cgi/reprint/79/8/2554 (date of access: 11.11.2008).

Hopfield J.J. Neurons with graded response have collective computational properties like those of two-stat neurons [Electronic resource] // Proc. Natl. Acad. Sci. USA. 1984. Vol. 81. P. 3088–3092. URL: http://www.pnas.org (date of access: 11.11.2008).

Izhikevich E.M. Simple model of spiking neurons [Electronic resource] // IEEE Transactions on Neural Networks. 2003. Vol. 14, Issue 6. P. 1569–1572. URL: http://www.nsi.edu/users/izhikevich/publications/spikes.htm (date of access: 11.11.2008).

Izhikevich E.M. Which model to use for cortical spiking neurons [Electronic resource] // IEEE Transactions on Neural Networks. 2003. Vol. 15. P. 1063–1070. URL: http://www.nsi.edu/users/izhikevich/publications/whichmod.htm (date of access: 11.11.2008).

Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing // Science. 1983. Vol. 220. P. 671–680.

Kleinfeld D. Sequential state generation by model neural networks [Electronic resource] // Proc. Nat. Acad. Sci. USA. 1986. Vol. 83. P. 9469–9473. URL: http://www.pnas.org (date of access: 11.11.2008).

McCulloch W.S., Pitts W. Logicheskoe ischislenie idei, otnosyashchikhsya k nervnoi aktivnosti // Avtomaty: per. s angl. / red. K.Shennon, Dzh.Makkarti. M.: Inostrannaya literatura, 1956. S. 362–384. [in Russian]

Minsky M., Papert S
. Pertseptrony: per. s angl. M.: Mir, 1971. 261 s. [in Russian]

Maass W.
Networks of spiking neurons: The third generation of neural network models [Electronic resource] // Neural Networks. 1997. Vol. 10, Issue 9. P. 1659-1671. URL: http://www.eccc.uni-trier.de/eccc (date of access: 11.11.2008).

Maass W., Natschläger T. Associative memory with networks of spiking neurons in temporal coding [Electronic resource] // Neuromorphic Systems: Engineering Silicon from Neurobiology / ed. by L.S.Smith, A.Hamilton. Amsrerdam: WorldScientific, 1998. P. 21–32. URL: http://www.cis.tugraz.at/igi/maass/psfiles/htc-ewns1.ps.gz (date of access: 11.11.2008).

Marian I., Reilly R.G., Mackey D. Efficient event-driven simulation of spiking neural networks [Electronic resource] // Proceedings of 3rd WSES International Conference on Neural Networks and Applications. Interlaken, Switzerland, February 2002. URL: http://cortex.cs.nuim.ie/papers/IM_RR_DM_EventDrivenSim.pdf (date of access: 11.11.2008).

Mattia M., Del Giudice P. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses [Electronic resource] // Neural Comp. 2000. Vol. 12. P. 2305–2329. URL: http://neural.iss.infn.it/Papers/asyncsimu.pdf (date of access: 11.11.2008).

McClelland J., McNaughton B., O’Reilly R. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory [Electronic resource] // Psychological Review. 1995. Vol. 102. P. 419–457. URL: http://www.cnbc.cmu.edu/~jlm/papers/McCMcNaughtonOReilly95.pdf (date of access: 11.11.2008).

McCloskey M., Cohen N. Catastrophic interference in connectionist networks: The sequential learning problem // The Psychology of Learning and Motivation. 1989. Vol. 24. P. 109–165.

Morita M. Associative memory with nonmonotone dynamics [Electronic resource] // Neural Networks. 1993. Vol. 6. P. 115–126. URL: http://volga.esys.tsukuba.ac.jp/~mor/paper/ (date of access: 11.11.2008).

Morita M. Smooth recollection of a pattern sequence by nonmonotone analog neural networks // Proceedings of the IEEE International Conference on Neural Networks, Orlando, 1994. Vol. 2. P. 1032–1037.

Мorita M. Memory and learning of sequential patterns by nonmonotone neural networks [Electronic resource] // Neural Networks. 1996. Vol. 9, Issue 8. P. 1477–1489. URL: http://volga.esys.tsukuba.ac.jp/~mor/paper/mor1996a.pdf (date of access: 11.11.2008).

Morita M. Computational study on the neural mechanism of sequential pattern memory [Electronic resource] // Cognitive Brain Research. 1996. Vol. 5. P. 137–146. URL: http://volga.esys.tsukuba.ac.jp/~mor/paper/mor1996b.pdf (date of access: 11.11.2008).

Morita M., Murata K., Morokami S. Context-dependent sequential recall by a trajectory attractor network with selective desensitization [Electronic resource] // Proceedings of the Third International Conference on Neural Networks and Artificial Intelligence, Minsk. 2003. P. 235–238. URL: http://volga.esys.tsukuba.ac.jp/~mor/paper/ICNNAI2003.pdf (date of access: 11.11.2008).

O'Reilly R.C. biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm [Electronic resource] // Neural Computation. 1996. Vol. 8. P. 895–938. URL: http://psych.colorado.edu/~oreilly/papers/OReilly98_6princip_tics.pdf (date of access: 11.11.2008).

O'Reilly R.C. Six principles for biologically-based computational models of cortical cognition [Electronic resource] // Trends in Cognitive Sciences. 1998. Vol. 2. P. 455–462. URL: http://psych.colorado.edu/~oreilly/papers/OReilly98_6princip_tics.pdf (date of access: 11.11.2008).

O'Reilly R.C., Frank M.J. Making working memory work: A computational model of learning in the frontal cortex and basal ganglia [Electronic resource] // Neural Computation. 2006. Vol. 18. P. 283–328. URL: http://www.u.arizona.edu/~mfrank/papers/OReillyFrank06.pdf (date of access: 11.11.2008).

O'Reilly R.C., Munakata Y. Computational neuroscience and cognitive modeling [Electronic resource] // Encyclopedia of Cognitive Sciences / ed. by L.Nadel. London: Macmillan, 2003. URL: http://psych.colorado.edu/~oreilly/papers/OReillyMunakata01_ecs_encyc.pdf (date of access: 11.11.2008).

Perrett D.I., Rolls E.T., Caan W.C. Visual neurons responsive to faces in the monkey temporal cortex // Experimental Brain Research. 1982. Vol. 47. P. 329–342.

Ratcliff R.
Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions // Psychological Review. 1990. Vol. 97. P. 285–308.

Robins A. Catastrophic forgetting, rehearsal, and pseudorehearsal // Connection Science. 1995. Vol. 7. P. 123–146.

Robins A. Consolidation in neural networks and in the sleeping brain // Connection Science. 1996. Vol. 8. P. 259–275.

Robins A., McCallum S. Pseudorehearsal and the catastrophic forgetting solution in Hopfield type networks // Connection Science. 1998. Vol. 10. P. 121–135.

Rolls E.T., Tovee M.J. Processing speed in the cerebral cortex and the neurophysiology of visual backward masking // Proc. Roy. Soc. В. 1994. Vol. 257. P. 9–15.

Rumelhart D.E., Hinton G.E., Williams R.G. Learning representation by back-propagating error // Nature. 1986. Vol. 323, Issue 6088. P. 533–536.

Ruppin E. Evolutionary embodied agents: A neuroscience perspective [Electronic resource] // Nature Reviews Neuroscience. 2002. Vol. 3. P. 132–142. URL: http://www.cs.tau.ac.il/~ruppin/evol_age_rev.pdf (date of access: 11.11.2008).

Rosenblatt F. Printsipy neirodinamiki. Pertseptrony i teoriya mekhanizmov mozga: per. s angl. M.: Mir, 1965. 175 s. [in Russian]

Senn W., Schneider M., Ruf B.
Activity-dependent development of axonal and dendritic delays or, why synaptic transmission should be unreliable [Electronic resource] // Neural Comput. 2002. Vol. 14, Issue 3, 583–619. URL: http://www.cns.unibe.ch/publications/ftp/paper_DelayNECO.pdf (date of access: 11.11.2008).

Sommer F.T., Wennekers T. Associative memory in networks of spiking neurons [Electronic resource] // Neural networks. 2001. Vol. 14. P. 825–834. URL: https://redwood.berkeley.edu/fsommer/papers/sommerwennekers01.pdf (date of access: 11.11.2008).

Sompolinsky H., Kanter I. Temporal association in asymmetric neural networks // Phys. Rev. Lett., 1986. Vol. 57. P. 2861–2864.

Stickgold R. Sleep: off-line memory reprocessing // Trends in Cognitive Sciences. 1999. Vol. 2, Issue 12. P. 484–492.

Suemitsu A., Morita M. A model of memory formation in the pair-association task [Electronic resource] // Proceedings of the 2000 International Conference on Neural Information Processing, Taejon. 2000. Vol. 2. P. 915–919. URL: http://volga.esys.tsukuba.ac.jp/~mor/paper/ICONIP2000.pdf (date of access: 11.11.2008).

Sutherland G., McNaughton B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles // Current Opinions in Neurobiology. 2000. Vol. 10. P. 180–186.

Terekhin A.T., Budilova E.V. Setevye mekhanizmy biologicheskoi regulyatsii [Network mechanisms of physiological regulation] // Uspekhi fiziologicheskikh nauk. 1995. T. 26, N 4. S. 75–97. [in Russian]

Thorpe S.T., Imbert M.
Biological constraints on connectionist modelling // Connectionism in Perspective / ed. by R.Pfeifer, Z.Schreter, F.Fogelman-Soulie, L.Steels. North-Holland: Elsevier, 1989.

Vedenov A.A. Modelirovanie elementov myshleniya [Modelling elements of thinking]. M.: Nauka, 1988. 159 s. [in Russian]

Vinogradova O.S
. Neironauka kontsa vtorogo tysyacheletiya: smena paradigm [Neuroscience of the end of second millennium: change of paradigms] // Zhurnal vyssh. nervn. deyatel. 2000. T. 50. S. 743–774. [in Russian]

Williams R.J., Zipser D.
A learning algorithm for continually running fully recurrent neural networks [Electronic resource] // Neural Comput. 1989. Vol. 1. P. 270–280. URL: http://citeseer.ist.psu.edu/williams89learning.html (date of access: 11.11.2008).

Yoshizawa S., Morita M., Amari S. Capacity of associative memory using a nonmonotonic neuron model [Electronic resource] // Neural Networks. 1993. Vol. 6. P. 167–176. URL: http://volga.esys.tsukuba.ac.jp/~mor/paper/yoshi1993.html (date of access: 11.11.2008).

Available online 19 april 2009.

About authors

Terekhin Anatoliy T. Ph.D., Faculty of Biology, Lomonosov Moscow State University, ul. Leninskie Gory, 1, str. 12, 119991 Moscow, Russia.
Е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Web-page: http://ecology.genebee.msu.su/3_SOTR/CV_Terekhin.htm

Budilova Elena V. Ph.D., Faculty of Biology, Lomonosov Moscow State University, ul. Leninskie Gory, 1, str. 12, 119991 Moscow, Russia.
Е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Kachalova Larisa M. Ph.D., Modern University for the Humanities, ul. Nizhegorodskaya, 32, 109029 Moscow, Russia.
Е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Karpenko Mikhail P. Ph.D., Modern University for the Humanities, ul. Nizhegorodskaya, 32, 109029 Moscow, Russia.
Е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.


Suggested citation

APA Style
Terekhin, A. T., Budilova, E. V., Kachalova, L. M., & Karpenko, M. P. (2009). Neural network modeling of brain cognitive functions: review of basic ideas. Psikhologicheskie Issledovaniya, 2(4). Retrieved from http://psystudy.ru. [in Russian, abstr. in English].

Russian State Standard GOST P 7.0.5-2008
Terekhin A.T., Budilova E.V., Kachalova L.M., Karpenko M.P. Neural network modeling of brain cognitive functions: review of basic ideas [Electronic resource] // Psikhologicheskie Issledovaniya. 2009. N 2(4). URL: http://psystudy.ru (date of access: dd.mm.yyyy). [in Russian, abstr. in English]

Top of the page >>

Related Articles